Fire Engineering Design Approaches

Intersec Dubai 20 January 2015

John Noone BSc (Hons) CEng MIEI Associate - Arup Gulf Ltd john.noone@arup.com

John Noone – Speaker Bio

John is an Associate Fire Safety Engineer in Arup's Dubai Office. A Chartered Fire Safety Engineer he hold a BSc Hons in Fire Safety Engineering.

John has gained a wide range of experience in fire engineering in Middle East, Africa, UK, Ireland, Russia and across Continental Europe .

He specialises in fire safety design, on-site implementation and handover of transportation, residential, commercial, industrial and assembly buildings.

John is a visiting lecturer at Trinity College Dublin on the fundamentals of fire safety science and fire dynamics.

Learning Objectives & Overview

Goals and Objectives

- How to define fire engineering goals and objectives?
- Examples of fire engineering goals and objectives
- Are alternative approaches available?
- How to demonstrate an acceptable level of safety?

Example of Alternative approaches to allow for design flexibility

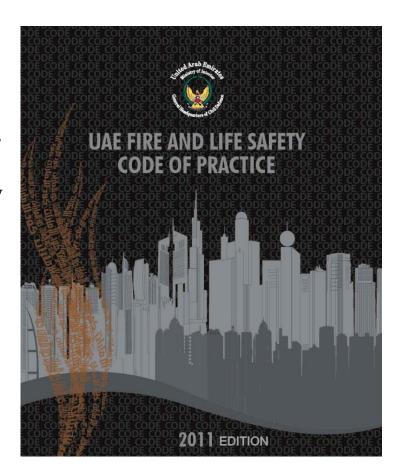
- Structural Fire Analysis
- Extended travel distances
- Atrium design

• Example of Tools available to achieve alternative approaches.

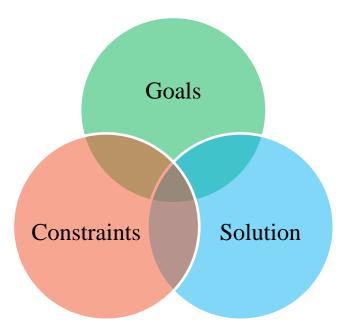
- Structural assessment tools
- Use of Computational Fluid Dynamics (CFD)
- Use of evacuation modelling software

Commitment to Best Practice

UAE Fire Code (V: Clause 1)


Commitment to Best Practice

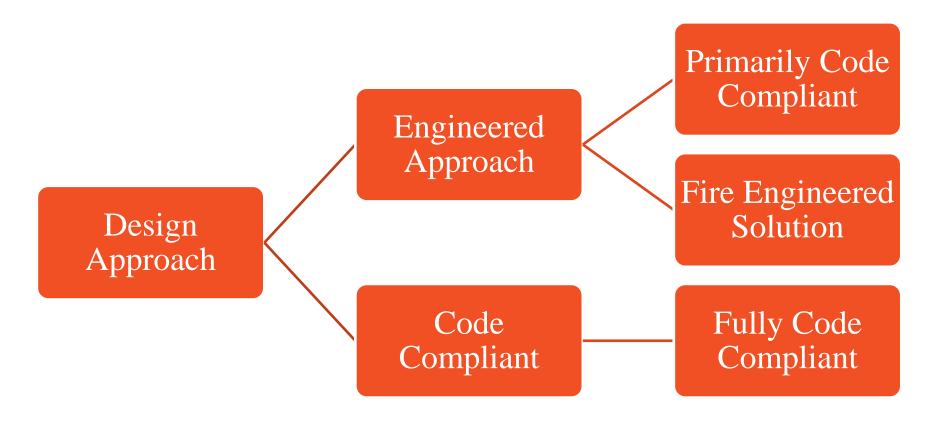
- Compliance with Relevant Code
- Compliance with Relevant act and Regulations
- High Level of Quality of Work
- Environmental Management and Sustainability
- Occupational Health and Safety


UAE Fire Code (Chapter 10: clause 27)

Fire Engineering analysis should include:

- Fire Dynamics
- Fire Size and Location
- Materials likely to be burning
- Fire and Plume Geometry
- Tenability

Goals and Objectives



Goal	Social	Economic	Environmental		
People	Health and safety	Value for Safety			
Quality of Asset	Quality of space	Cost and value of asset	Construction impact		
Quality of Operation	Functionality of space	Operational costs	Operational impact		
Protection of Asset	Continuity of asset	Property Protection	Prevention of fire damage to the environment		
Protection of Operation	Continuity of function	Business Continuity			

Establish Framework & Benchmarks for Design

- Framework Define Fire Engineering Brief
 - IFEG
 - SFPE
 - **BS** 7974
- Enhancing / Optimising Fire Safety Key Points
 - Operational and business continuity
 - Quality and functionality of space
 - Enhancing Fire Safety
 - Prescriptive solution may not be possible

Goals and Objectives

Goals and Objectives

Buildings benefiting from an alternative approach include:

- Airports (Extended Evacuation Time, Business Continuity)
- Public Buildings (Management may wish to remain during fire)
- Heritage buildings (Protection of valuable Assets)
- Train stations (Business Continuity)
- Tunnels (Asset Protection, Business Continuity, Life Safety)
- Power Stations (Societal acceptability)

Concept of Equivalency (NFPA 5000)

NFPA 5000:1.5 Equivalency.

- **1.5.1 General.** Nothing in this Code shall prohibit methods of construction, materials, and designs not specifically prescribed in this Code where equivalent alternatives are approved by the authority having jurisdiction (AHJ).
- **1.5.2 Approval of Alternatives.** Alternative systems, methods, or devices approved as equivalent by the authority having jurisdiction shall be recognized as being in compliance with this Code.

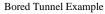
Concept of Equivalency

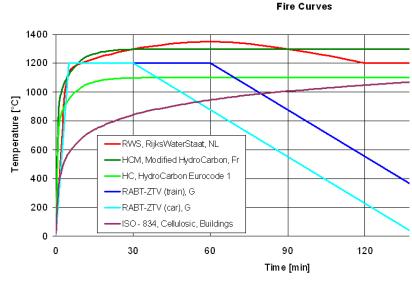
Code Compliant Scenario

Room: $130m \times 80m = 10,400m^2$ $10,400m^2$ @ $9.3m^2/pers = 1,120 ppl$ Exit capacity = $1,120 \times 5mm = 5.6m$ Total travel distance = 76m

Non Code Compliant Scenario

Room: 130m x 80m = 10,400m² 10,400m² @ 9.3m²/pers = 1,120 ppl Exit capacity = 1,120 x 5mm = 5.6m Total travel distance = 135m


Alternative Approaches

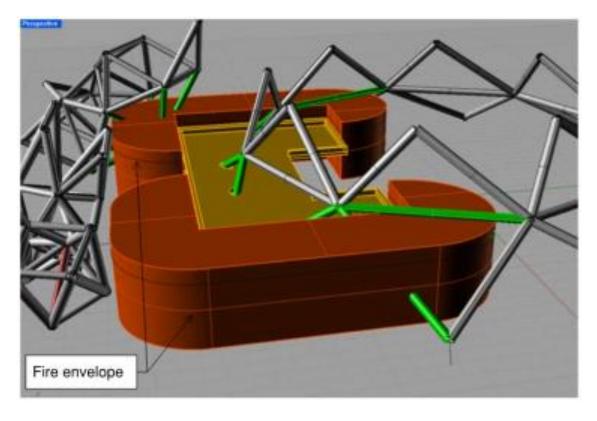

Structural Fire Engineering Analysis

Structural Fire Resistance

Temperature Time Fire Curve

Increased Protection

- Fibres to mitigate Spalling
- Consider Temperature-Time Curves
- Increased Fire Resistance may be required

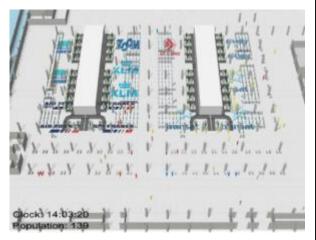

Structural Fire Resistance

Fire Protection to the Structure?

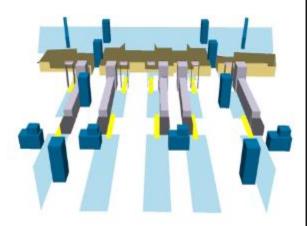
- Common approach in large single storey spaces.
- Common in Airports

Structural Fire Resistance

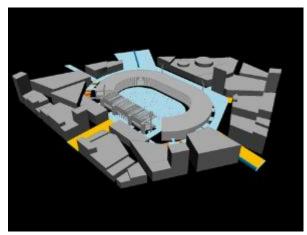
- Fire load assessment and flame envelope undertaken to determine which members might be affected by a fire.
- Robustness checks done in concert with the ambient structural design team to determine robustness of space frame system.

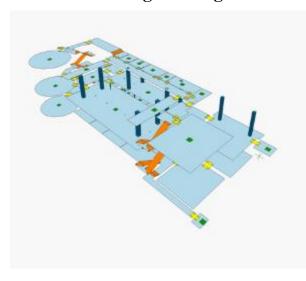

Alternative Approaches

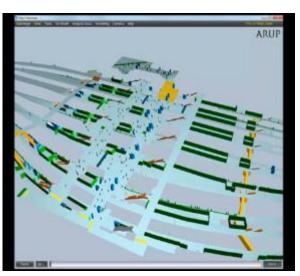
Evacuation Modelling

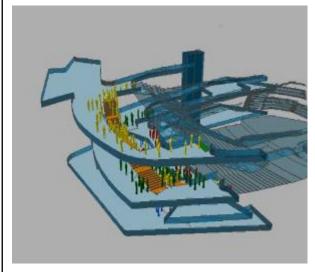


Evacuation Modelling Potential

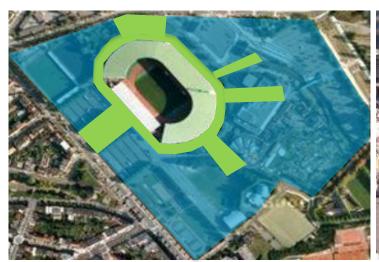

Transport facilities


Process modelling


Crowd management

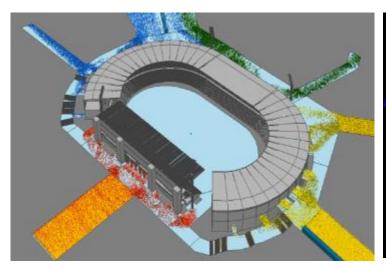

Existing buildings

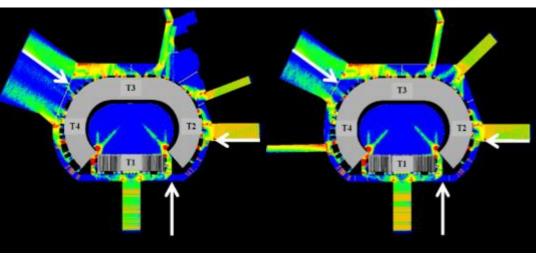
Live construction environments


Stadia and venues

Summary of Applications (Fire)

- Large exhibition spaces Indoor/outdoor events
- Airports
- Construction phasing
- Phased Evacuation/Progressive horizontal Evacuation
- Masterplanning
- Transport facilities Rail/Underground
- Sports Stadia
- Duplicate Services Ped Planning, Security etc


European Stadium – Our approach


Proposed master plan with constrained space

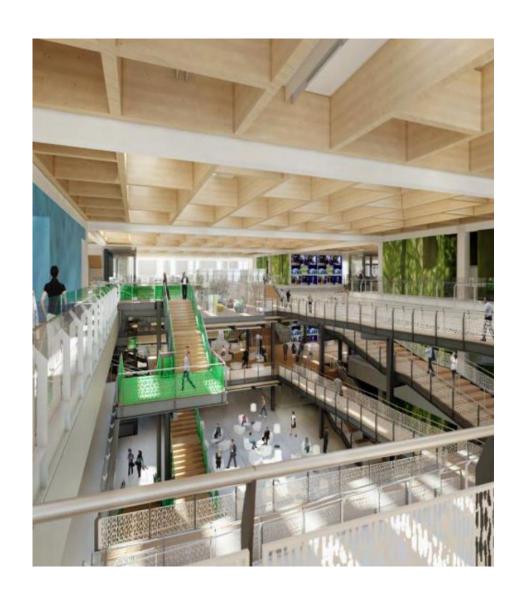
Modelling approach simulated 80,000 persons for a concert mode

MassMotion model visual

Crowd density maps for different phases

Alternative Approaches

CFD Modelling


CFD Modelling

• UAE Fire Code Recognises the use of CFD modelling for specific smoke control purposes.

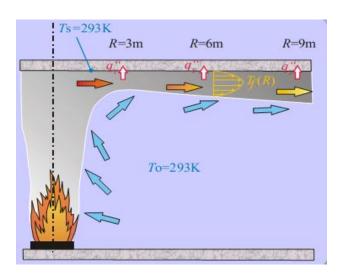
- CFD modelling can be used for other aspects:
 - Assessment of conditions for evacuation
 - Assessment of thermal conditions in the fire compartment
 - Fire investigations
 - Research (NIST, BRE)

Open planning

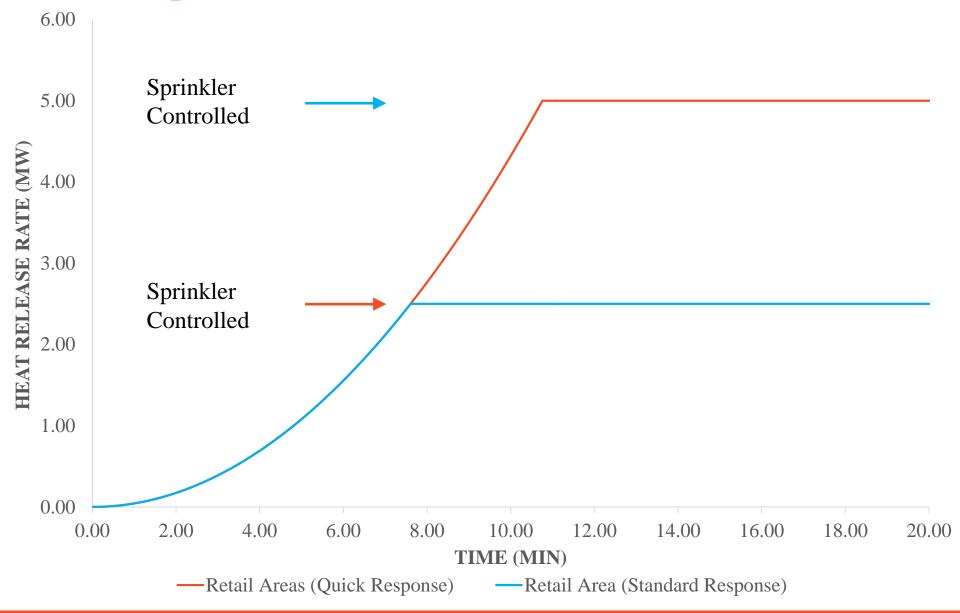
- Fire Engineering can help enable Architectural visions towards open plan design
- It is a common
 Architectural desire to
 avoid heavy doors and
 partitions as
 reasonably feasible.

Alternative Approaches

Fire Load Limitations



Fuel Load limitations – Example space


Activation of Sprinklers

	Ceiling Height								
	5m	10m	15m	20m	25m	30m	40m	50m	
Estimated	0.75MW	2.1MW	4.2MW	8.5MW	15MW	>20MW	>20MW	>20MW	
Minimum Size of									
fire needed to									
activate sprinkler									
(under steady state									
conditions) ¹									
Estimated time of	4.8mins	7.5mins	10.3mins	14.6mins	19.2mins	>20mins	>20mins	>20mins	
sprinkler									
activation ²									
Estimated fire size	1MW	2.4MW	4.5MW	9MW	15.4MW	>20MW	>20MW	>20MW	
at time of sprinkler									
activation ²									

Sprinkler Controlled Fire

Concluding Remarks

- Clearly Define Goals and Objectives
- Apply Fire Engineering Framework to Design to meet Goals and Objectives
- Example of Tools available to achieve alternative approaches and demonstrate appropriate Level of safety.
 - Structural assessment tools
 - Use of Computational Fluid Dynamics (CFD)
 - Use of evacuation modelling software

